

Neoplasia II: Tumor Characteristics
Kristine Krafts, M.D.

- Tumor nomenclature
- Tumor characteristics
- Epidemiology
- Cancer pathogenesis

- Tumor nomenclature
- Tumor characteristics
 - Differentiation and anaplasia
 - Rate of growth
 - Local invasion
 - Metastasis

- Tumor nomenclature
- Tumor characteristics
 - Differentiation and anaplasia

Differentiation and Anaplasia

- Differentiation = how much the tumor cells resemble their cells of origin
 - Well-differentiated: closely resembles
 - Moderately-differentiated: sort of resembles
 - Poorly-differentiated: doesn't resemble
- Benign tumors are usually well-differentiated
- Malignant tumors can show any level of differentiation

Thyroid adenoma (well-differentiated)

Squamous cell carcinoma, well-differentiated

Squamous cell carcinoma, moderately-differentiated

Squamous cell carcinoma, poorly-differentiated

Intercellular bridges

Anaplasia: a state of complete un-differentiation

- Literally, to form (-plasia) backwards (ana-)
- Misnomer! Cells don't de-differentiate.
- Just means cells are very poorly-differentiated
- Almost always indicates malignancy

Anaplastic cells show:

- Pleomorphism
- Hyperchromatic, large nuclei
- Bizarre nuclear shapes, distinct nucleoli
- Lots of mitoses, and atypical mitoses
- Architectural anarchy

Anaplastic carcinoma

Abnormal mitoses

Dysplasia = disorderly (dys-) growth (-plasia)

- "Dysplasia" is used to describe disorderly changes in non-neoplastic epithelial cells
- Graded as mild, moderate or severe
 - Mild-moderate: usually reversible
 - Severe: usually progresses to carcinoma in situ (CIS)
- Next step after CIS: invasive carcinoma

Dysplastic cells show:

- Pleomorphism
- Hyperchromatic, large nuclei
- Lots of mitoses
- Architectural anarchy

Q. Wait a minute, dysplasia sounds suspiciously similar to differentiation – what's the difference?

Q. Wait a minute, dysplasia sounds suspiciously similar to differentiation — what's the difference?

A. Both terms describe whether cells look normal or not!

But:

- "Differentiation" is only used with neoplastic cells, and "Dysplasia" is only used with non-neoplastic cells!
- "Dysplasia" is only used with epithelial cells, but "Differentiation" can apply to any cell type.

Non-neoplastic epithelial cells

Normal squamous epithelium

Moderate dysplasia

Severe dysplasia

Dysplastic epithelium

Normal epithelium

Invasive squamous cell carcinoma

- Tumor nomenclature
- Tumor characteristics
 - Differentiation and anaplasia
 - Rate of growth

Generalizations about Growth

- Malignant tumors grow faster than benign ones.
- Poorly-differentiated tumors grow faster than well-differentiated ones.
- Growth is dependent on:
 - Blood supply
 - Hormonal factors
 - Emergence of aggressive sub-clones

Growth Fraction

- GF = % of tumor cells that are dividing
- Age of tumor matters
 - Early on (subclinical), GF high.
 - Later (clinically detectable), GF low.
- Type of tumor matters
 - Leukemias, lymphomas, small-cell lung cancer: high GF
 - Breast, colon cancer: low GF
- Important for treatment
 - High GF tumor: treat with chemotherapy/radiation
 - Low GF tumor: treat by debulking

Tumor cells undergoing apoptosis

Neoplasia Outline

- Tumor nomenclature
- Tumor characteristics
 - Differentiation and anaplasia
 - Rate of growth
 - Local invasion

Local Invasion

Benign tumors

- Stay where they are.
- Can't invade or metastasize.
- Usually encapsulated.

Malignant tumors

- Infiltrate, invade, destroy surrounding tissue.
- Then metastasize to other parts of body.
- Not encapsulated.

Malignant tumor invading kidney

Malignant tumor invading kidney

Malignant tumor invading kidney

Neoplasia Outline

- Tumor nomenclature
- Tumor characteristics
 - Differentiation and anaplasia
 - Rate of growth
 - Local invasion
 - Metastasis

Invasive carcinoma

Metastasizing carcinoma

Liver with multiple metastases

Metastasis

- Metastasis = development of secondary tumor implants in distant tissues
- Half of all patients with malignancies have mets at the time of diagnosis!!
- Metastasis depends on:
 - Type of tumor
 - Size of tumor
 - Degree of differentiation of tumor

- Seeding
- Lymphatic spread
- Hematogenous spread

Seeding

- Tumor invades body cavity
- Bits break off and implant on peritoneal surfaces
- Ovarian cancer can spread easily this way

Liver seeded with metastatic ovarian carcinoma

- Seeding
- Lymphatic spread
 - Tumor spreads to local lymph nodes
 - Sentinel lymph node first
 - Moves through thoracic duct
 - Empties into subclavian vein
 - Carcinomas like to spread this way

Tumor in lymphatic

Tumor in lymph node

Tumor in lymph node

- Seeding
- Lymphatic spread
- Hematogenous spread
 - Veins are easier to invade than arteries
 - Liver and lungs are the most common metastatic destinations
 - Sarcomas like to spread this way (but so do carcinomas)

Sarcoma metastatic to lung

Sarcoma metastatic to lung