Anemia
Kristine Krafts, M.D.
Anemia Outline

- Background facts about blood
- Anemia: general information
- Anemia: specific types
Anemia Outline

• Background facts about blood
Normal blood cells
Complete Blood Count (CBC)

- RBC
- Hemoglobin
- Hematocrit
Complete Blood Count (CBC)

MCV
- microcytic
- normocytic
- macrocytic

MCHC
- hypochromic
- normochromic
Additional Red Blood Cell Properties

Size variation
- anisocytosis

Shape
- poikilocytosis
Normal red blood cells
Anemia Outline

- Background facts about blood
- Anemia: general information
An (without) -emia (blood):

a reduction below normal in hemoglobin or red blood cell number.
Symptoms of Anemia

Pale skin, mucous membranes
Jaundice (if hemolytic)
Tachycardia
Breathlessness
Dizziness
Fatigue
Anemia Outline

- Background facts about blood
- Anemia: general information
- Anemia: specific types
Three Ways to Get Anemic

Lose blood

Destroy too much blood
 • Extracorpuscular reasons
 • Intracorpuscular reasons

Make too little blood
 • Too few building blocks
 • Too few erythroblasts
 • Not enough room
Three Ways to Get Anemic

Lose blood
Anemia of Blood Loss

Things you must know

- Cause: traumatic, acute blood loss
- At first, hemoglobin is normal!
- After 2-3 days, see reticulocytes
- Chronic blood loss is different (it causes iron deficiency anemia).
Reticulocytes
Three Ways to Get Anemic

Lose blood

Destroy too much blood
 - Extracorpuscular reasons
 - Intracorpuscular reasons
Hemolytic Anemias

- Intracorpuscular vs. extracorpuscular
- Chronic vs. acute
- Signs of destruction: ↑ bilirubin, ↑ LDH, ↓ haptoglobin
- Signs of production: ↑ reticulocytes, nucleated red cells in blood
Reticulocytes (supravital stain)
Three Ways to Get Anemic

Lose blood

Destroy too much blood
- Extracorpuscular reasons
Microangiopathic Hemolytic Anemia

Things You Must Know

• Physical trauma to red cells
• Schistocytes
• Find out why!
Red cells snagged on fibrin strand
Schistocytes
Triangulocyte
Causes of MAHA

- Artificial heart valve
- Malignancy
- Obstetric complications
- Sepsis
- Trauma
Autoimmune Hemolytic Anemia

Things You Must Know

- Warm AIHA
 - IgG
 - Spleen
 - Spherocytes

- Cold AIHA
 - IgM, complement
 - Intravascular hemolysis
 - Agglutination
Warm AIHA
Warm AIHA
Cold AIHA
Cold AIHA
patient red cells + AHG = agglutination

Direct antiglobulin test (DAT)
Three Ways to Get Anemic

Lose blood

Destroy too much blood
 • Extracorpuscular reasons
 • Intracorpuscular reasons
Sickle Cell Anemia

Things You Must Know

- Hemoglobinopathy (qualitative defect in hemoglobin)
- Single amino acid substitution in beta chain of hemoglobin
- Can be heterozygous or homozygous
- Sickle cells are nasty:
 - Fragile (burst easily)
 - Get stuck in vessels
Hemoglobin
Point mutation in β chain gene

abnormal β chains
(substitution of valine for glutamate)

Hgb S
Nasty!
Aggregates and polymerizes on deoxygenation
Red cell becomes sickle shaped
Sickles clog up vessels...
...plus, they are fragile
Sickle cell anemia
Sickle cell anemia: foot lesion
Sickle cell anemia: spleen

Note the "sickled" appearance of the RBC's in the vessels and sinusoids.
Clinical Findings in Sickle Cell Anemia

- Blacks (8% are heterozygous)
- Severity of disease is variable
- Chronic hemolysis, vaso-occlusive disease, and ↑ infections (autosplenectomy)
- Treatment: prevent triggers, vaccinate, transfuse
Thalassemia

Things You Must Know

• Quantitative defect in hemoglobin
• Can’t make enough α or β chains
• Variable disease severity
• Hypochromic, microcytic anemia with increased RBC and target cells
Hemoglobin chain development

Hgb F = $\alpha_2\gamma_2$

Hgb $A_2 = \alpha_2\delta_2$

Hgb $A = \alpha_2\beta_2$

Hemoglobin chain development
Thalassemia
Thalassemia: Medullary expansion
Hereditary Spherocytosis

Things You Must Know

• Tons of spherocytes
• Spectrin defect
• Splenectomy is curative
Hereditary spherocytosis
Splenomegaly in hereditary spherocytosis
Glucose-6-Phosphate Dehydrogenase Deficiency

Things You Must Know

- ↓ G6PD → ↑ peroxides → cell lysis
- Oxidant exposure
- Bite cells (removal of Heinz bodies)
- Self-limiting
Clinical Findings in G6PD Deficiency

- Some patients asymptomatic
- Others have episodic hemolysis
- Triggers: broad beans (favism), drugs (antibiotics, aspirin)
- Spontaneous resolution
Child with G6PD deficiency: jaundiced sclera
Why Do G6PD-Deficient Red Cells Die?

- They can’t reduce nasties
- Nasties attack hemoglobin bonds
- Heme breaks away from globin
- Globin denatures, sticks to red cell membrane (“Heinz body”)
- Spleen bites out Heinz bodies
G6PD deficiency: Heinz bodies
G6PD deficiency: bite cells
Three Ways to Get Anemic

Lose blood

Destroy too much blood
 • Extracorpuscular reasons
 • Intracorpuscular reasons

Make too little blood
 • Too few building blocks
Iron-Deficiency Anemia

Things You Must Know

• Most important cause: GI bleeding
• Microcytic, hypochromic anemia
• Must find out why patient is iron deficient!
Hemoglobin
Iron-deficiency anemia
Atrophic glossitis in iron-deficiency anemia
Koilonychia in iron-deficiency anemia
Causes of Iron Deficiency

- Decreased iron intake
 - bad diet
 - bad absorption

- Increased iron loss
 - GI bleed
 - menses
 - hemorrhage

- Increased iron requirement
 - pregnancy
Anemia of Chronic Disease

Things You Must Know

- Infections, inflammation, malignancy
- Iron metabolism disturbed
- Normochromic, normocytic anemia
- Anemia usually mild
Megaloblastic Anemia

Things You Must Know

• Defective DNA synthesis
• Nuclear/cytoplasmic asynchrony
• ↓ B₁₂/folate
• Macrocytic anemia with oval macrocytes and hypersegmented neutrophils
methyl FH₄

B₁₂

methylene FH₄

FH₄

FH₂

dUMP → dTMP → DNA

Need B₁₂ to make DNA!
Megaloblastic Anemia

retarded DNA synthesis
unimpaired RNA synthesis

BIG cells!
immature nucleus
mature cytoplasm
Megaloblastic anemia
Megaloblastic anemia
Atrophic glossitis in megaloblastic anemia
What else is B_{12} good for?

- **Homocysteine**
 - ↑↑ homocysteine
 - ↓ endothelial damage
 - ↓↓ atherosclerosis
 - thrombosis

- **Methionine**
 - ↓↓ methionine
 - ↓ myelin damage
 - subacute combined degeneration

- Methionine is good for myelin damage.
- Homocysteine is good for endothelial damage and atherosclerosis thrombosis.
Three Ways to Get Anemic

Lose blood

Destroy too much blood
 • Extracorpuscular reasons
 • Intracorpuscular reasons

Make too little blood
 • Too few building blocks
 • Too few erythroblasts
Aplastic Anemia

Things You Must Know

- Pancytopenia
- Empty marrow
- Most are idiopathic
Blood smear in aplastic anemia
Empty bone marrow in aplastic anemia
Empty bone marrow in aplastic anemia
Causes of Aplastic Anemia

- Idiopathic
- Drugs
- Viruses
- Pregnancy
- Fanconi anemia
Three Ways to Get Anemic

Lose blood

Destroy too much blood
 • Extracorpuscular reasons
 • Intracorpuscular reasons

Make too little blood
 • Too few building blocks
 • Too few erythroblasts
 • Not enough room
Bone marrow full of fibrosis